Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
International Journal of Stem Cells ; : 438-447, 2023.
Article in English | WPRIM | ID: wpr-1000543

ABSTRACT

Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant

2.
International Journal of Stem Cells ; : 415-424, 2023.
Article in English | WPRIM | ID: wpr-1000539

ABSTRACT

Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo.Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals.After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.

3.
Experimental Neurobiology ; : 203-212, 2021.
Article in English | WPRIM | ID: wpr-898366

ABSTRACT

The inducible Cre-loxP system provides a useful tool for inducing the selective deletion of genes that are essential for proper development and enables the study of gene functions in properly developed animals. Here, we show that inducible Cre-loxP driven by the Gli1-promoter can induce cell-type-specific deletion of target genes in cerebellar cortical neurons. We used reporter mice containing the YFP (yellow fluorescence protein) gene at the Gt(ROSA)26Sor locus with a loxP -flanked transcriptional stop sequence, in which successful Cre-mediated excision of the stop sequence is indicated by YFP expression in Cre-expressing cells. Administration of tamoxifen during early postnatal days (P4~7) induces Cre-dependent excision of stop sequences and allows YFP expression in proliferating neuronal progenitor cells in the external granule layer and Bergmann glia in the Purkinje cell layer. A substantial number of YFP-positive progenitor cells in the external granule layer migrated to the internal granule cell layer and became granule cell neurons. By comparison, injection of tamoxifen during late postnatal days (P19~22) induces YFP expression only in Bergmann glia, and most granule cell neurons were devoid of YFP expression. The results indicate that the Gli1 promoter is temporarily active in progenitor cells in the external granule layer during the early postnatal period but constitutively active in Bergmann glia. We propose that the Gli1-mediated CreER system can be applied for the conditional deletion of genes of interest from cerebellar granule cell neurons and/or Bergmann glia.

4.
Experimental Neurobiology ; : 203-212, 2021.
Article in English | WPRIM | ID: wpr-890662

ABSTRACT

The inducible Cre-loxP system provides a useful tool for inducing the selective deletion of genes that are essential for proper development and enables the study of gene functions in properly developed animals. Here, we show that inducible Cre-loxP driven by the Gli1-promoter can induce cell-type-specific deletion of target genes in cerebellar cortical neurons. We used reporter mice containing the YFP (yellow fluorescence protein) gene at the Gt(ROSA)26Sor locus with a loxP -flanked transcriptional stop sequence, in which successful Cre-mediated excision of the stop sequence is indicated by YFP expression in Cre-expressing cells. Administration of tamoxifen during early postnatal days (P4~7) induces Cre-dependent excision of stop sequences and allows YFP expression in proliferating neuronal progenitor cells in the external granule layer and Bergmann glia in the Purkinje cell layer. A substantial number of YFP-positive progenitor cells in the external granule layer migrated to the internal granule cell layer and became granule cell neurons. By comparison, injection of tamoxifen during late postnatal days (P19~22) induces YFP expression only in Bergmann glia, and most granule cell neurons were devoid of YFP expression. The results indicate that the Gli1 promoter is temporarily active in progenitor cells in the external granule layer during the early postnatal period but constitutively active in Bergmann glia. We propose that the Gli1-mediated CreER system can be applied for the conditional deletion of genes of interest from cerebellar granule cell neurons and/or Bergmann glia.

5.
International Journal of Stem Cells ; : 127-141, 2020.
Article | WPRIM | ID: wpr-834303

ABSTRACT

Background and Objectives@#Stem cell therapy is a promising strategy for treating neurological diseases but its effectiveness is influenced by the route of administration and the characteristics of the stem cells. We determined whether neural induction of mesenchymal stem cells (MSCs) was beneficial when the cells were delivered intra-arterially through the carotid artery. @*Methods@#and Results: MSCs were neurally induced using a retroviral vector expressing the neurogenic transcription factor neurogenin-1 (Ngn1). The LacZ gene encoding bacterial β-galactosidase was used as a control. Ischemic stroke was induced by transluminal occlusion of the middle cerebral artery and 3 days later the MSCs were delivered intra- arterially through the internal carotid artery. Magnetic resonance imaging analysis indicated that compared to MSCs expressing LacZ (MSCs/LacZ), MSCs expressing Ngn1 (MSCs/Ngn1) exhibited increased recruitment to the ischemic region and populated this area for a longer duration. Immunohistochemical analysis indicated that compared to MSCs/LacZ, MSCs/Ngn1 more effectively alleviated neurological dysfunction by blocking secondary damage associated with neuronal cell death and brain inflammation. Microarray and real-time PCR analysis indicated that MSCs/Ngn1 exhibited increased expression of chemotactic cytokine receptors, adherence to endothelial cells, and migration ability. @*Conclusions@#Neural induction with Ngn1 increases the homing ability of MSCs, enhancing their engraftment efficiency in the ischemic rat brain. Intra-arterial delivery of neurally induced MSCs/Ngn1 3 days after ischemic injury blocks neuronal cell death and inflammation, and improves functional recovery. Thus, intra-arterial administration of stem cells with neural properties may be a novel therapy for the treatment of ischemic stroke.

6.
Experimental Neurobiology ; : 189-206, 2020.
Article | WPRIM | ID: wpr-832461

ABSTRACT

Neurogenic differentiation 1 (NeuroD1) is a class B basic helix-loop-helix (bHLH) transcription factor and regulates differentiation and survival of neuronal and endocrine cells by means of several protein kinases, including extracellular signal-regulated kinase (ERK). However, the effect of phosphorylation on the functions of NeuroD1 by ERK has sparked controversy based on context-dependent differences across diverse species and cell types. Here, we evidenced that ERK-dependent phosphorylation controlled the stability of NeuroD1 and consequently, regulated proneural activity in neuronal cells. A null mutation at the ERK-dependent phosphorylation site, S274A, increased the half-life of NeuroD1 by blocking its ubiquitin-dependent proteasomal degradation. The S274A mutation did not interfere with either the nuclear translocation of NeuroD1 or its heterodimerization with E47, its ubiquitous partner and class A bHLH transcription factor. However, the S274A mutant increased transactivation of the E-box-mediated gene and neurite outgrowth in F11 neuroblastoma cells, compared to the wild-type NeuroD1. Transcriptome and Gene Ontology enrichment analyses indicated that genes involved in axonogenesis and dendrite development were downregulated in NeuroD1 knockout (KO) mice. Overexpression of the S274A mutant salvaged neurite outgrowth in NeuroD1-deficient mice, whereas neurite outgrowth was minimal with S274D, a phosphomimicking mutant. Our data indicated that a longer protein half-life enhanced the overall activity of NeuroD1 in stimulating downstream genes and neuronal differentiation. We propose that blocking ubiquitin-dependent proteasomal degradation may serve as a strategy to promote neuronal activity by stimulating the expression of neuron-specific genes in differentiating neurons.

7.
Experimental Neurobiology ; : 287-298, 2018.
Article in English | WPRIM | ID: wpr-716238

ABSTRACT

Ischemic stroke and cerebral infarction triggered by the blockage of blood supply can cause damage to the brain via a complex series of pathological changes. Recently, diverse therapies have emerged as promising candidates for the treatment of stroke. These treatments exert therapeutic effects by acting on diverse target molecules and cells in different time windows from the acute to chronic phases. Here, using immunohistochemistry, we show pathophysiological changes in the brain microenvironment at the hyperacute (within 6 h), acute (1~3 days), subacute (7 days), and chronic (1 month) phases following ischemic injury. Ischemic injury in rats was induced by occluding the middle cerebral artery and was validated by magnetic resonance imaging. The progression of damage to the brain was evaluated by immunohistochemistry for NeuN⁺ neurons, GFAP⁺ astrocytes, and Iba1⁺ microglia, and by the emergence of the cell death-related molecules such as AIF, FAF1, and activated caspase-3. Our data regarding the spatial and temporal information on pathophysiological changes may warrant the investigation of the timing of administration of therapeutic treatments in preclinical studies with an animal model of stroke.


Subject(s)
Animals , Rats , Astrocytes , Brain , Brain Ischemia , Caspase 3 , Cell Death , Cerebral Infarction , Immunohistochemistry , Magnetic Resonance Imaging , Microglia , Middle Cerebral Artery , Models, Animal , Neurons , Stroke , Therapeutic Uses
8.
Experimental Neurobiology ; : 104-114, 2014.
Article in English | WPRIM | ID: wpr-187149

ABSTRACT

Stroke is one of the common causes of death and disability. Despite extensive efforts in stroke research, therapeutic options for improving the functional recovery remain limited in clinical practice. Experimental stroke models using genetically modified mice could aid in unraveling the complex pathophysiology triggered by ischemic brain injury. Here, we optimized the procedure for generating mouse stroke model using an intraluminal suture in the middle cerebral artery and verified the blockage of blood flow using indocyanine green coupled with near infra-red radiation. The first week after the ischemic injury was critical for survivability. The survival rate of 11% in mice without any treatment but increased to 60% on administering prophylactic antibiotics. During this period, mice showed severe functional impairment but recovered spontaneously starting from the second week onward. Among the various behavioral tests, the pole tests and neurological severity score tests remained reliable up to 4 weeks after ischemia, whereas the rotarod and corner tests became less sensitive for assessing the severity of ischemic injury with time. Further, loss of body weight was also observed for up 4 weeks after ischemia induction. In conclusion, we have developed an improved approach which allows us to investigate the role of the cell death-related genes in the disease progression using genetically modified mice and to evaluate the modes of action of candidate drugs.


Subject(s)
Animals , Mice , Anti-Bacterial Agents , Body Weight , Brain Injuries , Brain Ischemia , Cause of Death , Disease Progression , Indocyanine Green , Ischemia , Middle Cerebral Artery , Stroke , Survival Rate , Sutures , Therapeutic Human Experimentation
9.
Experimental & Molecular Medicine ; : e93-2014.
Article in English | WPRIM | ID: wpr-163226

ABSTRACT

The Cre/LoxP system is a well-established approach to spatially and temporally control genetic inactivation. The calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIalpha) promoter limits expression to specific regions of the forebrain and thus has been utilized for the brain-specific inactivation of the genes. Here, we show that CaMKIIalpha-Cre can be utilized for simultaneous inactivation of genes in the adult brain and in male germ cells. Double transgenic Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice generated by crossing CaMKIIalpha-Cre(+/Cre) mice with floxed ROSA26 lacZ reporter (Rosa26(+/stop-lacZ)) mice exhibited lacZ expression in the brain and testis. When these mice were mated to wild-type females, about 27% of the offspring were whole body blue by X-gal staining without inheriting the Cre transgene. These results indicate that recombination can occur in the germ cells of male Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice. Similarly, when double transgenic Gnao(+/f)::CaMKIIalpha-Cre(+/Cre) mice carrying a floxed Go-alpha gene (Gnao(f/f)) were backcrossed to wild-type females, approximately 22% of the offspring carried the disrupted allele (Gnao(Delta)) without inheriting the Cre transgene. The Gnao(Delta/Delta) mice closely resembled conventional Go-alpha knockout mice (Gnao(-/-)) with respect to impairment of their behavior. Thus, we conclude that CaMKIIalpha-Cre mice afford recombination for both tissue- and time-controlled inactivation of floxed target genes in the brain and for their permanent disruption. This work also emphasizes that extra caution should be exercised in utilizing CaMKIIalpha-Cre mice as breeding pairs.


Subject(s)
Animals , Female , Male , Mice , Brain/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Gene Deletion , Gene Knockout Techniques/methods , RNA, Untranslated/genetics , Recombination, Genetic , Spermatozoa/metabolism
10.
Experimental & Molecular Medicine ; : e110-2014.
Article in English | WPRIM | ID: wpr-103504

ABSTRACT

Bone marrow-derived mesenchymal stromal cells (MSCs) have been reported to be beneficial for the treatment of liver fibrosis. Here, we investigated the use of genetically engineered MSCs that overexpress hepatocyte growth factor (HGF) as a means to improve their therapeutic effect in liver fibrosis. Liver fibrosis was induced by intraperitoneal injection of dimethylnitrosamine. HGF-secreting MSCs (MSCs/HGF) were prepared by transducing MSCs with an adenovirus carrying HGF-encoding cDNA. MSCs or MSCs/HGF were injected directly into the spleen of fibrotic rats. Tissue fibrosis was assessed by histological analysis 12 days after stem cell injection. Although treatment with MSCs reduced fibrosis, treatment with MSCs/HGF produced a more significant reduction and was associated with elevated HGF levels in the portal vein. Collagen levels in the liver extract were decreased after MSC/HGF therapy, suggesting recovery from fibrosis. Furthermore, liver function was improved in animals receiving MSCs/HGF, indicating that MSC/HGF therapy resulted not only in reduction of liver fibrosis but also in improvement of hepatocyte function. Assessment of cell and biochemical parameters revealed that mRNA levels of the fibrogenic cytokines PDGF-bb and TGF-beta1 were significantly decreased after MSC/HGF therapy. Subsequent to the decrease in collagen, expression of matrix metalloprotease-9 (MMP-9), MMP-13, MMP-14 and urokinase-type plasminogen activator was augmented following MSC/HGF, whereas tissue inhibitor of metalloprotease-1 (TIMP-1) expression was reduced. In conclusion, therapy with MSCs/HGF resulted in an improved therapeutic effect compared with MSCs alone, probably because of the anti-fibrotic activity of HGF. Thus, MSC/HGF represents a promising approach toward a cell therapy for liver fibrosis.


Subject(s)
Animals , Humans , Male , Rats , Cell Engineering , Cells, Cultured , Genetic Engineering , Hepatocyte Growth Factor/analysis , Liver/metabolism , Liver Cirrhosis/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Rats, Sprague-Dawley , Up-Regulation
12.
Experimental & Molecular Medicine ; : e10-2013.
Article in English | WPRIM | ID: wpr-199830

ABSTRACT

Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.


Subject(s)
Adolescent , Animals , Child , Humans , Mice , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cytosine Deaminase/genetics , Fluorouracil/pharmacology , Genetic Therapy , Genomic Instability/drug effects , Karyotype , Mesenchymal Stem Cells/cytology , Multipotent Stem Cells/cytology , Neoplasms/therapy , Retroviridae/metabolism , Time Factors , Transduction, Genetic
13.
The Korean Journal of Physiology and Pharmacology ; : 405-411, 2012.
Article in English | WPRIM | ID: wpr-728188

ABSTRACT

The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, beta-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.


Subject(s)
Animals , Humans , Rats , Astrocytes , Axons , Electrophysiology , Embryonic Stem Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Nerve Regeneration , Neurons , Oligodendroglia , Polymers , Regeneration , Spinal Cord , Spinal Cord Injuries , Transplants
14.
Anatomy & Cell Biology ; : 241-251, 2010.
Article in English | WPRIM | ID: wpr-49860

ABSTRACT

Reelin, an extracellular glycoprotein has an important role in the proper migration and positioning of neurons during brain development. Lack of reelin causes not only disorganized lamination of the cerebral and cerebellar cortex but also malpositioning of mesencephalic dopaminergic (mDA) neurons. However, the accurate role of reelin in the migration and positioning of mDA neurons is not fully elucidated. In this study, reelin-deficient reeler mice exhibited a significant loss of mDA neurons in the substantia nigra pars compacta (SNc) and a severe alteration of cell distribution in the retrorubal field (RRF). This abnormality was also found in Dab1-deficinet, yotari mice. Stereological analysis revealed that total number of mDA neurons was not changed compared to wild type, suggesting that the loss of mDA neurons in reeler may not be due to the neurogenesis of mDA neurons. We also found that formation of PSA-NCAM-positive tangential nerve fibers rather than radial glial fibers was greatly reduced in the early developmental stage (E14.5) of reeler. These findings provide direct evidence that the alteration in distribution pattern of mDA neurons in the reeler mesencephalon mainly results from the defect of the lateral migration using tangential fibers as a scaffold.


Subject(s)
Animals , Mice , Brain , Cerebellar Cortex , Dopaminergic Neurons , Glycoproteins , Mesencephalon , Mice, Neurologic Mutants , Nerve Fibers , Neurogenesis , Neurons , Substantia Nigra
15.
Experimental & Molecular Medicine ; : 387-397, 2008.
Article in English | WPRIM | ID: wpr-171134

ABSTRACT

Mesenchymal stem cells (MSCs) secrete bioactive factors that exert diverse responses in vivo. In the present study, we explored mechanism how MSCs may lead to higher functional recovery in the animal stroke model. Bone marrow-derived MSCs were transplanted into the brain parenchyma 3 days after induction of stroke by occluding middle cerebral artery for 2 h. Stoke induced proliferation of resident neural stem cells in subventricular zone. However, most of new born cells underwent cell death and had a limited impact on functional recovery after stroke. Transplantation of MSCs enhanced proliferation of endogenous neural stem cells while suppressing the cell death of newly generated cells. Thereby, newborn cells migrated toward ischemic territory and differentiated in ischemic boundaries into doublecortin+ neuroblasts at higher rates in animals with MSCs compared to control group. The present study indicates that therapeutic effects of MSCs are at least partly ascribed to dual functions of MSCs by enhancing endogenous neurogenesis and protecting newborn cells from deleterious environment. The results reinforce the prospects of clinical application using MSCs in the treatment of neurological disorders.


Subject(s)
Animals , Male , Rats , Cell Differentiation/physiology , Cell Proliferation , Cell Survival , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Models, Biological , Neurons/physiology , Rats, Sprague-Dawley , Stroke/pathology
16.
The Korean Journal of Physiology and Pharmacology ; : 131-135, 2008.
Article in English | WPRIM | ID: wpr-728596

ABSTRACT

The profile of membrane currents was investigated in differentiated neuronal cells derived from human neural stem cells (hNSCs) that were obtained from aborted fetal cortex. Whole-cell voltage clamp recording revealed at least 4 different currents: a tetrodotoxin (TTX)-sensitive Na+ current, a hyperpolarization-activated inward current, and A-type and delayed rectifier-type K+ outward currents. Both types of K+ outward currents were blocked by either 5 mM tetraethylammonium (TEA) or 5 mM 4-aminopyridine (4-AP). The hyperpolarization-activated current resembled the classical K+ inward current in that it exhibited a voltage-dependent block in the presence of external Ba2+ (30micrometer) or Cs+ (3micrometer). However, the reversal potentials did not match well with the predicted K+ equilibrium potentials, suggesting that it was not a classical K+ inward rectifier current. The other Na+ inward current resembled the classical Na+ current observed in pharmacological studies. The expression of these channels may contribute to generation and repolarization of action potential and might be regarded as functional markers for hNSCs-derived neurons.


Subject(s)
Humans , 4-Aminopyridine , Action Potentials , Membranes , Neural Stem Cells , Neurons , Tetraethylammonium , Tetrodotoxin
17.
Korean Journal of Anatomy ; : 509-517, 2004.
Article in Korean | WPRIM | ID: wpr-646407

ABSTRACT

Human mesenchymal stem cells (hMSCs) are multipotent stem cells that can differentiate into several mesenchymal lineage cells. In this study, we established conditions that allowed a long term expansion of hMSCs. To search for the optimum culture condition, growth rates of hMSCs were measured in the presence of several growth factors. Hepatic growth factor (HGF) and leukemia inhibitory factor (LIF) did not facilitate proliferation of hMSCs. In contrast, basic fibroblast growth factor (bFGF) effectively promoted growth of the cells in vitro by 3 fold. The growth stimulatory effect of bFGF was dependent on the concentration. The adipogenic potential was dramatically decreased in hMSCs isolated from an aged donor whereas osteogenic potential was minimally decreased. Addition of bFGF resumed the adipogenic and osteogenic differentiation potential. Thus, the cells that expanded in the presence of bFGF retained the potential to differentiate into adipogenic, chondrogenic, or osteogenic lineage cells. MSCs could be expanded for at least 8 passages with bFGF and the resulting cells retained the normal karyotype. The cells were positive for CD9, CD13, CD15, CD90, CD137, and CD140b; but negative for CD14, CD34, and CD45. Importantly, the cells were found to express a neural stem cell marker, nestin, and a neuronal marker, beta-tubulin III. The results suggest that bFGF promote proliferation while maintaining multi-lineage differentiation potency of hMSCs. Finally, we suggest that it is critical to identify novel markers other than nestin or beta-tubulin III to monitor acquisition of neuronal phenotypes by hMSCs.


Subject(s)
Humans , Fibroblast Growth Factor 2 , Intercellular Signaling Peptides and Proteins , Karyotype , Leukemia Inhibitory Factor , Mesenchymal Stem Cells , Multipotent Stem Cells , Nestin , Neural Stem Cells , Neurons , Phenotype , Tissue Donors , Tubulin
18.
Korean Journal of Anatomy ; : 499-508, 2004.
Article in Korean | WPRIM | ID: wpr-644127

ABSTRACT

Neural stem cells are multipotent stem cells that can differentiate into neurons and glial cells. Neural stem cells are found in not only developing nervous system but some restricted regions in adult brain. Here, we presented an effective method that allows a long-term preservation of neural stem cells without losing multipotency. First, we isolated neural stem cells from the developing forebrain of nestin-EGFP transgenic mice carrying green fluorescence protein (GFP) driven by nestin promoter and enhancer. Primary neurospheres isolated from these mice highly expressed GFP. The expression of GFP in neurospheres was sustained for several passages. In order to investigate the effect of freezing on the stem cell properties, we cryopreserved the primary neurospheres for 2 wks in liquid nitrogen. GFP expression pattern as well as differentiation potential of the secondary neurosphere formed after cryopreservation were not that different from those of the primary neurosphere formed before cryopreservation. When the same cryopreservation method was applied to neural stem cells isolated from human fetal brain (gestation 13 ~15 wks), the expression of nestin, a stem cell marker, and differentiation patterns were not changed after cryopreservation. We also performed isolation of neural stem cells from long-term cryopreserved human fetal brain tissues. The neurospheres were successfully formed and showed similar differention properties with neurospheres isolated from fresh brain tissue. In addition, we demonstrated multipotentiality of neural stem cells was not changed with the duration of cryopreservation of brain tissue, suggesting the self renewality and multipotentiality of neural stem cells were not affected by long-term cryopreservation, The present results provide an useful information for the development of stem cell expansion which is essential factor in clinical application of stem cells.


Subject(s)
Adult , Animals , Humans , Mice , Brain , Cryopreservation , Fluorescence , Freezing , Mice, Transgenic , Multipotent Stem Cells , Nervous System , Nestin , Neural Stem Cells , Neuroglia , Neurons , Nitrogen , Prosencephalon , Stem Cells
19.
Experimental & Molecular Medicine ; : 52-56, 2004.
Article in English | WPRIM | ID: wpr-190974

ABSTRACT

Human central neurocytoma is a kind of the brain tumors that are usually found in anterior part of the lateral ventricles. In this study, we established conditions that allowed proliferation of neurocytoma cells culture and analyzed characteristics of neurocytoma cells in vitro. For in vitro, a condition that used for culturing neural stem cells and contained basic fibroblast growth factor (bFGF) provided high proliferation. RT-PCR analaysis showed that nestin was found in neurocytoma cells, indicating that the neurocytomas possess neural stem cell properties. Interestingly, treatment of neurocytoma cells with forskolin increased expression of glial fibrillary acidic protein with a concomitant decrease in the nestin expression. Forskolin also induced morphological changes of neurocytoma cells to adopt an astrocyte-like phenotype. The results suggest that neurocyotma cells may have properties of multipotent neural stem cells.


Subject(s)
Animals , Humans , Astrocytes/cytology , Cell Differentiation/drug effects , Cell Proliferation , Cell Shape , Fibroblast Growth Factor 2/pharmacology , Colforsin/pharmacology , Intermediate Filament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurocytoma/drug therapy , Tumor Cells, Cultured
20.
Korean Journal of Anatomy ; : 381-387, 2003.
Article in English | WPRIM | ID: wpr-654602

ABSTRACT

Human mesenchymal stem cells (hMSCs) are multipotent stem cells that can differentiate into several mesenchymal lineage cells. In this study, we established an efficient method for gene delivery into these cells. Non-viral transfection reagents that were commercially available yielded 5% efficiency. In contrast, a retroviral vector yielded more than 46% transduction, which was further increased to 90% by repetitive infection. Retroviral transduction did not alter the multipotency of hMSCs. Thus, the cells retained the potential to differentiate into adipogenic, chondrogenic, or osteogenic lineages. The conditions established in this study will contribute to development of trans-differentiation methods of hMSCs into non-mesodermal lineage cells and thereby facilitate their possible use as vehicles for autologous transplantation in both cell and gene therapy for various diseases.


Subject(s)
Humans , Autografts , Genetic Therapy , Indicators and Reagents , Mesenchymal Stem Cells , Multipotent Stem Cells , Retroviridae , Transfection , Transplantation, Autologous , Zidovudine
SELECTION OF CITATIONS
SEARCH DETAIL